WCA-Based Low-PSLL and Wide-Nulling Beampattern Synthesis for Radar Applications

Author:

Xu Yanhong,Wang Dongyun,Wang Anyi,Yan Yan

Abstract

There are many unavoidable array errors in practical scenarios, which would drastically increase the sidelobe level (SLL) and distort the performance of radar systems accordingly. In this paper, an effective beampattern synthesis approach is proposed to realize a low peak sidelobe level (PSLL) and wide-nulling in the presence of array errors, thus improving the consequent performance of the radar. In particular, the covariance matrix of the sidelobe region (CMSR) is incorporated into the optimization. Considering the randomness of array errors, the statistical mean method is adopted to obtain a more accurate calculation of the CMSR in the presence of array errors based on a Monte Carlo trial. To efficiently and effectively solve the optimization problem, an advanced metaheuristic algorithm, i.e., the water cycle algorithm (WCA), is adopted when seeking the corresponding optimal weight vectors. Numerical results are provided and discussed to demonstrate the effectiveness of the proposed approach including the results based on a wideband linearly spaced magneto-electric (ME) dipole array.

Funder

National Natural Science Foundation of China

the natural science special project of Shaanxi Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Research on Evaluation Method of Radar Anti-jamming Effectiveness Based on Experimental Big Data;Bai;Proceedings of the 2020 6th International Conference on Big Data and Information Analytics,2020

2. Robust STAP Based on Magnitude and Phase Constrained Iterative Optimization

3. A sidelobe suppression algorithm for 77 GHz MIMO radars

4. Control and utilization of range-dependent beampattern with waveform diverse array radars

5. Visualization cf radiation-pattern characteristics of phased arrays using digital phase shifters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3