Contributions of Climate Change, Vegetation Growth, and Elevated Atmospheric CO2 Concentration to Variation in Water Use Efficiency in Subtropical China

Author:

Xiao Jianyong,Xie BinggengORCID,Zhou Kaichun,Li JunhanORCID,Xie Jing,Liang Chao

Abstract

Ecosystem water use efficiency (WUE) plays an important role in maintaining the carbon assimilation–water transpiration balance in ecosystems. However, spatiotemporal changes in WUE in the subtropical region of China (STC) and the impact of driving forces remain unclear. In this study, we analyzed the spatiotemporal variation in WUE in the STC and used ridge regression combined with path analysis to identify direct and indirect effects of climate change, vegetation growth, and elevated atmospheric CO2 concentration (Ca) on the interannual trend in WUE. We then quantified the actual and relative contributions of these drivers to WUE change based on the sensitivity of these variables on WUE and the trends of the variables themselves. Results reveal a mean WUE of 1.57 g C/m2/mm in the STC. The annual WUE series showed a descending trend with a decline rate of 0.0006 g C/m2/mm/year. The annual average temperature (MAT) and leaf area index (LAI) had strong positive direct effects on the WUE, while the vapor pressure deficit (VPD) had a strong negative direct effect. Opposite direct and indirect effects offset each other, but overall there was a total positive effect of Ca and VPD on WUE. In terms of actual contribution, LAI, Ca, and VPD were the main driving factors; LAI caused WUE to increase by 0.0026 g C/m2/mm/year, while Ca and VPD caused WUE to decrease by 0.0021 and 0.0012 g C/m2/mm/year, respectively. In terms of relative contribution, LAI dominated the WUE trend, although Ca and VPD were also important factors. Other drivers contributed less to the WUE trend. The results of this study have implications for ecological management and restoration under environmental climate change conditions in subtropical regions worldwide.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3