A Hierarchical Information Extraction Method for Large-Scale Centralized Photovoltaic Power Plants Based on Multi-Source Remote Sensing Images

Author:

Ge Fan,Wang Guizhou,He Guojin,Zhou DengjiORCID,Yin RanyuORCID,Tong LianziORCID

Abstract

In the context of global sustainable development, solar energy is very widely used. The installed capacity of photovoltaic panels in countries around the world, especially in China, is increasing steadily and rapidly. In order to obtain accurate information about photovoltaic panels and provide data support for the macro-control of the photovoltaic industry, this paper proposed a hierarchical information extraction method, including positioning information and shape information, and carried out photovoltaic panel distribution mapping. This method is suitable for large-scale centralized photovoltaic power plants based on multi-source satellite remote sensing images. This experiment takes the three northwest provinces of China as the research area. First, a deep learning scene classification model, the EfficientNet-B5 model, is used to locate the photovoltaic power plants on 16-m spatial resolution images. This step obtains the area that contains or may contain photovoltaic panels, greatly reducing the study area with an accuracy of 99.97%. Second, a deep learning semantic segmentation model, the U2-Net model, is used to precisely locate photovoltaic panels on 2-m spatial resolution images. This step achieves the exact extraction results of the photovoltaic panels from the area obtained in the previous step, with an accuracy of 97.686%. This paper verifies the superiority of a hierarchical information extraction method in terms of accuracy and efficiency through comparative experiments with DeepLabV3+, U-Net, SegNet, and FCN8s. This meaningful work identified 180 centralized photovoltaic power plants in the study area. Additionally, this method makes full use of the characteristics of different remote sensing data sources. This method can be applied to the rapid extraction of global photovoltaic panels.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference37 articles.

1. Development Status and Prospect of Solar Photovoltaic Power Generation;Guo;Shandong Ind. Technol.,2018

2. Solar Cell Review: Materials, Policy-Driven Mechanisms and Application Prospects;Cao;Acta Mater. Compos. Sin.,2022

3. A review of photovoltaic poverty alleviation projects in China: Current status, challenge and policy recommendations

4. Targeted poverty alleviation using photovoltaic power: Review of Chinese policies

5. A sociocultural study on solar photovoltaic energy system in India: Stratification and policy implication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3