Fast Distributed Multiple-Model Nonlinearity Estimation for Tracking the Non-Cooperative Highly Maneuvering Target

Author:

Zhou Fansen,Wang Yidi,Zheng Wei,Li Zhao,Wen Xin

Abstract

The newly developed near-space vehicle has the characteristics of high speed and strong maneuverability, being able to perform vertical skips and a wide range of lateral maneuvers. Tracking this kind of target with ground-based radars is difficult because of the limited detection range caused by the curvature of the Earth. Compared with ground-based radars, satellite tracking platforms equipped with Synthetic Aperture Radars (SARs) have a wide detection range, and can keep the targets in custody, making them a promising approach to tracking near-space vehicles continuously. However, this approach may not work well, due to the unknown maneuvers of the non-cooperative target, and the limited computing power of the satellites. To enhance tracking stability and accuracy, and to lower the computational burden, we have proposed a Fast Distributed Multiple-Model (FDMM) nonlinearity estimation algorithm for satellites, which adopts a novel distributed multiple-model fusion framework. This approach first requires each satellite to perform local filtering based on its own single model, and the corresponding fusion factor derived by the Wasserstein distance is solved for each local estimate; then, after diffusing the local estimates, each satellite performs multiple-model fusion on the received estimates, based on the minimum weighted Kullback–Leibler divergence; finally, each satellite updates its state estimation according to the consensus protocol. Two simulation experiments revealed that the proposed FDMM algorithm outperformed the other four tracking algorithms: the consensus-based distributed multiple-model UKF; the improved consensus-based distributed multiple-model STUKF; the consensus-based strong-tracking adaptive CKF; and the interactive multiple-model adaptive UKF; the FDMM algorithm had high tracking precision and low computational complexity, showing its effectiveness for satellites tracking the near-space target.

Funder

The science and technology innovation Program of Hunan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3