Optimal Security Protection Strategy Selection Model Based on Q-Learning Particle Swarm Optimization

Author:

Gao Xin,Zhou Yang,Xu Lijuan,Zhao DaweiORCID

Abstract

With the rapid development of Industrial Internet of Things technology, the industrial control system (ICS) faces more and more security threats, which may lead to serious risks and extensive damage. Naturally, it is particularly important to construct efficient, robust, and low-cost protection strategies for ICS. However, how to construct an objective function of optimal security protection strategy considering both the security risk and protection cost, and to find the optimal solution, are all significant challenges. In this paper, we propose an optimal security protection strategy selection model and develop an optimization framework based on Q-Learning particle swarm optimization (QLPSO). The model performs security risk assessment of ICS by introducing the protection strategy into the Bayesian attack graph. The QLPSO adopts the Q-Learning to improve the local optimum, insufficient diversity, and low precision of the PSO algorithm. Simulations are performed on a water distribution ICS, and the results verify the validity and feasibility of our proposed model and the QLPSO algorithm.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Young innovation team of colleges and universities in 308 Shandong province

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3