Abstract
This paper provides an overview of the area-wise distributed monitoring based on long gauge sensing to meet the requirements in the field of structural health monitoring (SHM), the methodology is reviewed and its application is discussed in this paper. First, a long gauge sensing technique developed for SHM, which utilizes carbon fiber and optical fiber sensors with important technical improvements is introduced and described. Second, area-wise distributed monitoring is discussed in order to demonstrate the high-performance of this approach in structural monitoring using a network of long gauge sensors. Third, theories of processing area-wise distributed monitoring data for comprehensive structural identification have been developed, which perform a rich recognition of local and global structural parameters including structural deflections, dynamic characteristics, damages, and loads. This area-wise distributed monitoring concept and the aforementioned long gauge sensing technique are finally embedded into an SHM system to offer a viable monitoring solution for groups and networks of infrastructural systems. Some successful applications are cited to confirm the effectiveness of the SHM system.
Funder
National Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献