Influence of Height–Diameter Ratio on Rock Compressive Failure Characteristics and Damage Evolution Law

Author:

Qi Minjie,Zhao Guangming,Xu Wensong,Cheng Xiang,Liu Chongyan,Liu Zhixi,Zhu Shikui,Wu Xukun

Abstract

In underground projects such as mining and tunneling, the presence of coal rock columns plays a certain supporting role, and the instability of coal rock columns is often related to their size and shape of presence. Therefore, in order to investigate the compressive damage characteristics and damage evolution law of rocks of different sizes, uniaxial compression tests were conducted on sandstones with different height−diameter ratios to explore the mechanical properties and damage characteristics of sandstones with different height−diameter ratios, analyze the connection between acoustic emission ringing count rate, accumulated energy, peak frequency, and b-value changes and height–diameter ratio, and analyze the evolution law of sandstones during damage based on damage variables, and draw the following conclusions. As the height-to-diameter ratio increases, the less affected by the end effect, the rock strength shows a nonlinear decreasing trend, and the decreasing trend becomes slow. The acoustic emission ringing count rate evolved from intermittent to continuous occurrence, showing multiple peaks as the test proceeded. The accumulated energy rises sharply before rupturing after several steps from stable development. As the height-to-diameter ratio increases, the acoustic emission signal before rupture rises more intensively, and the damage is more concentrated. The overall level of the b-value shows an increasing trend, the proportion of acoustic emission high-frequency signal gradually increases, and the development of tiny cracks inside the rock more intensively. Therefore, the sudden change of acoustic emission signal can be used as a precursor of rock damage. The rock damage curve has smaller values in the stable damage phase. With the increase in the height-to-diameter ratio, the non-stable damage stage damage showed a trend of decreasing and then increasing and reached the minimum at L/D = 2.0.

Funder

National Natural Science Foundation of China

Anhui Province Science and Technology Major Project

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. Fracture patterns induced by deep underground excavation based on a crack propagation model;Li;J. China Coal Soc.,2019

2. Effect of initial geo-stress dynamic unloading during tunnel excavation;Yan;Chin. J. Geotech. Eng.,2009

3. Discussion on heterogeneity of rock material and size effect on specimen strength;You;Chin. J. Rock Mech. Eng.,2000

4. INVESTIGATION ON WAVELET-BASED METHOD OF FAULT DIAGNOSIS FOR A PISTON PUMP

5. Study on statistical damage constitutive model of rock considering scale effect;Yang;Chin. J. Rock Mech. Eng.,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3