Lotic Ecosystem Sediment Microbial Communities’ Resilience to the Impact of Wastewater Effluents in a Polluted European Hotspot—Mureș Basin (Transylvania, Romania)

Author:

Boeraș Ioana1ORCID,Burcea Alexandru2,Bănăduc Doru1ORCID,Florea David-Ioan3ORCID,Curtean-Bănăduc Angela1

Affiliation:

1. Applied Ecology Research Center, Lucian Blaga University of Sibiu, I. Raţiu Street 5-7, 550012 Sibiu, Romania

2. Ecotur Sibiu, Rahova Street 43, 550345 Sibiu, Romania

3. Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany

Abstract

The aim of this study was to assess the impact of WWTP effluents on the sediment microbial communities throughout the Mureș River. This study shows the existence of an ecological equilibrium between the WWTP effluent disruptors and the resilience of the Mureș River sediment microbiomes, a fact that suggests the river’s stable/balanced ecological status in this regard, partly due to the microbial communities’ resilience to the local impact of WWTP effluents. High-throughput 16S bacterial metabarcoding was used to evaluate the bacterial communities in the sediment. Due to the lotic system’s sediment microbial communities’ sensitivity to environmental changes, we assumed the dependency of these community structures and functions on environmental abiotic and abiotic parameters. The study results show that, although bacterial communities are equally diverse in the three locations (upstream WWTP, WWTP effluents, and downstream WWTP), there is a difference in community structure between the upstream samples and the WWTP samples, while the downstream samples contain a mixture of the upstream and WWTP effluent communities. Just downstream of the WWTP sediment, microbial communities are influenced by the specific input from the WWTP effluents; nevertheless, the river sediment microbiome is resilient and able to further recover its natural microbial composition, as evidenced by the similarity in bacterial community structures at all upstream river locations. This study demonstrates the ecological equilibrium between the WWTP effluent disruptors and the resilience capacity of the Mureș River sediment microbiomes, a fact that indicates the river’s stable/balanced ecological status, in part due to the microbial communities’ resilience to the local impact of WWTP effluents. Based on these findings, a monitoring system should be implemented here in the future.

Funder

RO04 Programme—Reduction of Hazardous Substances

Lucian Blaga University of Sibiu

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3