Direct Membrane Filtration of Wastewater: A Comparison between Real and Synthetic Wastewater

Author:

Uman Ahmet Erkan12,Bair Robert A.1,Yeh Daniel H.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33617, USA

2. Bioengineering Department, Istanbul Medeniyet University, Istanbul 34865, Turkey

Abstract

In this study, a lab scale direct membrane filtration (DMF) system using ultrafiltration membranes was operated to compare synthetic and real wastewater to evaluate their membrane fouling propensity and the partitioning of organics and nutrients during concentration. For fouling prevention, cyclic operation was used which consisted of 90 s of filtration followed by 15 s of relaxation and backwashing conducted every 15 min. The system was tested at a high initial flux of 80 LMH (L/m2·h), and the trials were run until a 90% volume reduction was achieved for each batch. Both the synthetic and real wastewater showed similar fouling propensities and organic and nutrient partitioning. The synthetic and real wastewater had an average flux of 46.3 LMH and 28.5 LMH and an average total chemical oxygen demand rejection of 90.3% and 83.1% after 30 h of operation, respectively. The recovery of organics was similar in both influents, resulting in 65.5% and 64.0% of the total chemical oxygen demand concentrations in the concentrate stream for synthetic and real wastewaters, respectively. The total phosphorous and nitrogen concentrations were also similar in terms of rejection rates resulting in 85% and 78% for the synthetic and 89% and 65% for the fresh WWs, respectively. The comparison revealed that synthetic wastewater, though not identical to real wastewater, can serve as a surrogate in DMF studies. This will help to remove one of the key sources of variability in current DMF studies and will allow for more rapid development of DMF technology.

Funder

Bill & Melinda Gates Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3