Penalty Function Optimization in Dual Response Surfaces Based on Decision Maker’s Preference and Its Application to Real Data

Author:

Aziz Nasuhar Ab.ORCID,Midi HabshahORCID

Abstract

The dual response surface methodology is a widely used technique in industrial engineering for simultaneously optimizing both the process mean and process standard deviation functions of the response variables. Many optimization techniques have been proposed to optimize the two fitted response surface functions that include the penalty function method (PM). The PM method has been shown to be more efficient than some existing methods. However, the drawback of the PM method is that it does not have a specific rule for determining the penalty constant; thus, in practice, practitioners will find this method difficult since it depends on subjective judgments. Moreover, in most dual response optimization methods, the sample mean and sample standard deviation of the response often use non-outlier-resistant estimators. The ordinary least squares (OLS) method is also usually used to estimate the parameters of the process mean and process standard deviation functions. Nevertheless, not many statistics practitioners are aware that the OLS procedure and the classical sample mean and sample standard deviation are easily influenced by the presence of outliers. Alternatively, instead of using those classical methods, we propose using a high breakdown and highly efficient robust MM-mean, robust MM-standard deviation, and robust MM regression estimators to overcome these shortcomings. We also propose a new optimization technique that incorporates a systematic method to determine the penalty constant. We call this method the penalty function method based on the decision maker’s (DM) preference structure in obtaining the penalty constant, denoted as PMDM. The performance of our proposed method is investigated by a Monte Carlo simulation study and real examples that employ symmetrical factorial design of experiments (DOE). The results signify that our proposed PMDM method is the most efficient method compared to the other commonly used methods in this study.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3