Temperature and Thermal Energy of a Coronal Mass Ejection

Author:

Bemporad AlessandroORCID

Abstract

Due to the scarcity of UV–EUV observations of coronal mass ejections (CMEs) far from the Sun (i.e., at heliocentric distances larger than 1.5 Rsun) our understanding of the thermodynamic evolution of these solar phenomena is still very limited. This work focuses on the analysis of a slow CME observed at the same time and in the same coronal locations in visible light (VL) by the MLSO Mark IV polarimeter and in the UV Lyman-α by the SOHO UVCS spectrometer. The eruption was observed at two different heliocentric distances (1.6 and 1.9 Rsun), making this work a test case for possible future multi-slit observations of solar eruptions. The analysis of combined VL and UV data allows the determination of 2D maps of the plasma electron density and also the plasma electron temperature, thus allowing the quantification of the distribution of the thermal energy density. The results show that the higher temperatures in the CME front are due to simple adiabatic compression of pre-CME plasma, while the CME core has a higher temperature with respect to the surrounding CME void and front. Despite the expected adiabatic cooling, the CME core temperatures increased between 1.6 and 1.9 Rsun from 2.4 MK up to 3.2 MK, thus indicating the presence of plasma heating processes occurring during the CME expansion. The 2D distribution of thermal energy also shows a low level of symmetry with respect to the CME propagation axis, possibly related with the CME interaction with nearby coronal structures. This work demonstrates the potential of UV and VL data combination and also of possible future multi-slit spectroscopic observations of CMEs.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3