Simplified Floating Wind Turbine for Real-Time Simulation of Large-Scale Floating Offshore Wind Farms

Author:

Pham Thanh-DamORCID,Dinh Minh-ChauORCID,Kim Hak-ManORCID,Nguyen Thai-ThanhORCID

Abstract

Floating offshore wind has received more attention due to its advantage of access to incredible wind resources over deep waters. Modeling of floating offshore wind farms is essential to evaluate their impacts on the electric power system, in which the floating offshore wind turbine should be adequately modeled for real-time simulation studies. This study proposes a simplified floating offshore wind turbine model, which is applicable for the real-time simulation of large-scale floating offshore wind farms. Two types of floating wind turbines are evaluated in this paper: the semi-submersible and spar-buoy floating wind turbines. The effectiveness of the simplified turbine models is shown by a comparison study with the detailed FAST (Fatigue, Aerodynamics, Structures, and Turbulence) floating turbine model. A large-scale floating offshore wind farm including eighty units of simplified turbines is tested in parallel simulation and real-time software (OPAL-RT). The wake effects among turbines and the effect of wind speeds on ocean waves are also taken into account in the modeling of offshore wind farms. Validation results show sufficient accuracy of the simplified models compared to detailed FAST models. The real-time results of offshore wind farms show the feasibility of the proposed turbine models for the real-time model of large-scale offshore wind farms.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. BP statistical review of world energy;Dudley;BP Stat. Rev.,2018

2. GWEC|Global Wind Report 2021;Council,2017

3. GWEC Launches Floating Offshore Wind Task Force https://www.offshorewind.biz/2020/07/07/gwec-launches-floating-offshore-wind-task-force/

4. Global Offshore Wind Capacity Slated to Multiply Eight-Fold by 2030 https://www.powermag.com/global-offshore-wind-capacity-slated-to-multiply-eight-fold-by-2030/

5. The Future of Offshore Wind is Afloat https://www.equinor.com/en/what-we-do/floating-wind.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3