Fuel Improvement Measures for Particulate Matter Emission Reduction during Corn Cob Combustion

Author:

Dragutinović NatašaORCID,Höfer Isabel,Kaltschmitt Martin

Abstract

Fuel-related measures and modernization of small-scale combustion units has become the focus of attention in the renewable heat generation sector, as a means to promote local biomass utilization and fuel-flexibility while meeting strict environmental legislative requirements. With the aim to mitigate total particulate matter emissions and ash-associated problems characteristic of crop residue combustion, (1) corn cob pellets (with and without kaolin and binder) as well as (2) fuel blends with wood pellets were combusted in a pellet oven under full load. Results show that additivation or fuel blending (e.g., 50 wt. % wood and 50 wt. % corn cob pellets) reduce total particulate and CO-emissions by 48 to 60 wt. % and 64 to 89 wt. %, respectively, in comparison to baseline emissions from non-additivized corn cob pellets. Kaolin prevented sintering of corn cob ash. However, considerable grate ash entrainment was observed. TPM consists of a “primary network”—polyhedral and spherical particles approximately 1 μm in diameter (mainly KCl), and a “secondary network” built on top of the primary network, consisting of square-prism-shaped particles of approximately 200 nm in diameter. KCl and K2SO4 are main compounds in particles from corn cob and wood pellet combustion, respectively. Effective measures demonstrated within this study should be complemented with low-cost coarse ash removal systems.

Funder

Deutsche Bundesstiftung Umwelt

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference91 articles.

1. World Energy Transitions Outlook: 1.5 °C Pathwayhttps://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook

2. Demonstrating Fuel Design To Reduce Particulate Emissions and Control Slagging in Industrial-Scale Grate Combustion of Woody Biomass

3. FAOSTAT Crop Statisticshttp://www.fao.org/faostat/en/#data/QC

4. Energie aus Biomasse;Kaltschmitt,2016

5. Analysis of the behaviour of pollutant gas emissions during wheat straw/coal cofiring by TG–FTIR

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3