Abstract
This paper presents a vector current controller (in the synchronous reference, or the dq, frame) with negative-sequence current injection capability for three-phase grid-connected converters. This capability is desired for the operation of the converter during unbalanced conditions and also for a certain type of islanding detection. The proposed controller first determines the double-frequency current references and then uses a sixth-order two-input two-output proportional-integral-resonance (PIR) structure, which is optimally designed. Compared with the existing similar approaches, the proposed controller has a simpler structure and more robust performance, e.g., against system parameter uncertainties and weak grid conditions. The proposed controller is developed for converters with both the L-type and LCL-type filters. For the LCL-type converter, a suboptimal partial state feedback control is also proposed to achieve robust stability and active damping of resonance poles without requiring additional sensors. Detailed experimental results are presented to illustrate the properties and performances of the proposed controller.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献