Dynamics Analysis Using Koopman Mode Decomposition of a Microgrid Including Virtual Synchronous Generator-Based Inverters

Author:

Hirase YukoORCID,Ohara Yuki,Matsuura Naoya,Yamazaki Takeaki

Abstract

In the field of microgrids (MGs), steady-state power imbalances and frequency/voltage fluctuations in the transient state have been gaining prominence owing to the advancing distributed energy resources (DERs) connected to MGs via grid-connected inverters. Because a stable, safe power supply and demand must be maintained, accurate analyses of power system dynamics are crucial. However, the natural frequency components present in the dynamics make analyses complex. The nonlinearity and confidentiality of grid-connected inverters also hinder controllability. The MG considered in this study consisted of a synchronous generator (the main power source) and multiple grid-connected inverters with storage batteries and virtual synchronous generator (VSG) control. Although smart inverter controls such as VSG contribute to system stabilization, they induce system nonlinearity. Therefore, Koopman mode decomposition (KMD) was utilized in this study for consideration as a future method of data-driven analysis of the measured frequencies and voltages, and a frequency response analysis of the power system dynamics was performed. The Koopman operator is a linear operator on an infinite dimensional space, whereas the original dynamics is a nonlinear map on a finite state space. In other words, the proposed method can precisely analyze all the dynamics of the power system, which involve the complex nonlinearities caused by VSGs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3