Large-Scale Impervious Surface Area Mapping and Pattern Evolution of the Yellow River Delta Using Sentinel-1/2 on the GEE

Author:

Liu Jiantao,Li Yexiang,Zhang Yan,Liu XiaoqianORCID

Abstract

The ecological environment of Yellow River Delta High-efficiency Ecological Economic Zone (YRDHEEZ) is adjacent to the Bohai Sea. The unique geographical location makes it highly sensitive to anthropogenic disturbances. As an important land surface biophysical parameter, the impervious surface area (ISA) can characterize the level of urbanization and measure the intensity of human activities, and hence, the timely understanding of ISA dynamic changes is of great significance to protect the ecological safety of the YRDHEEZ. Based on the multi-source and multi-modal Sentinel-1/2 remotely sensed data provided by Google Earth Engine (GEE) cloud computing platform, this study developed a novel approach for the extraction of time-series ISA in the YRDHEEZ through a combination of random forest algorithm and numerous representative features extracted from Sentinel-1/2. Subsequently, we revealed the pattern of the ISA spatial-temporal evolution in this region over the past five years. The results demonstrated that the proposed method has good performance with an average overall accuracy of 94.84% and an average kappa coefficient of 0.9393, which verified the feasibility of the proposed method for large-scale ISA mapping with 10 m. Spatial-temporal evolution analysis revealed that the ISA of the YRDHEEZ decreased from 5211.39 km2 in 2018 to 5147.02 km2 in 2022 with an average rate of −16.09 km2/year in the last 5 years, suggesting that the ISA of YRDHEEZ has decreased while its overall pattern was not significantly changed over time. The presented workflow can provide a reference for large-scale ISA mapping and its evolution analysis, especially in regions on estuarine deltas.

Funder

National Natural Science Foundation of China

Shandong Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. Impervious surfaces Coverage: The Emergence of a Key Environmental Indicator;Arnold;J. Am. Plan. Assoc.,1996

2. Comparison of Impervious surfaces area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery;Yuan;Remote Sens. Environ.,2006

3. Jia, Y., Tang, L., and Wang, L. (2017). Influence of Ecological Factors on Estimation of Impervious surfaces Area Using Landsat 8 Imagery. Remote Sens., 9.

4. Temporal and spatial correlation between Impervious surfaces and surface runoff: A case study of the main urban area of Hangzhou city;Yao;J. Remote Sens.,2020

5. The Importance of Imperviousness;Schueler;Watershed Prot. Tech.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3