An Anchor-Free Detection Algorithm for SAR Ship Targets with Deep Saliency Representation

Author:

Lv Jianming,Chen Jie,Huang ZhixiangORCID,Wan Huiyao,Zhou Chunyan,Wang Daoyuan,Wu Bocai,Sun Long

Abstract

Target detection in synthetic aperture radar (SAR) images has a wide range of applications in military and civilian fields. However, for engineering applications involving edge deployment, it is difficult to find a suitable balance of accuracy and speed for anchor-based SAR image target detection algorithms. Thus, an anchor-free detection algorithm for SAR ship targets with deep saliency representation, called SRDet, is proposed in this paper to improve SAR ship detection performance against complex backgrounds. First, we design a data enhancement method considering semantic relationships. Second, the state-of-the-art anchor-free target detection framework CenterNet2 is used as a benchmark, and a new feature-enhancing lightweight backbone, called LWBackbone, is designed to reduce the number of model parameters while effectively extracting the salient features of SAR targets. Additionally, a new mixed-domain attention mechanism, called CNAM, is proposed to effectively suppress interference from complex land backgrounds and highlight the target area. Finally, we construct a receptive-field-enhanced detection head module, called RFEHead, to improve the multiscale perception performance of the detection head. Experimental results based on three large-scale SAR target detection datasets, SSDD, HRSID and SAR-ship-dataset, show that our algorithm achieves a better balance between ship target detection accuracy and speed and exhibits excellent generalization performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3