Satellite-Based Analysis of Spatiotemporal Wildfire Pattern in the Mongolian Plateau

Author:

Bao Yulong,Shinoda Masato,Yi Kunpeng,Fu Xiaoman,Sun Long,Nasanbat Elbegjargal,Li Na,Xiang Honglin,Yang Yan,DavdaiJavzmaa Bulgan,Nandintsetseg BanzragchORCID

Abstract

Burned area is a critical input to biomass burning carbon emissions algorithms and for understanding variability in fire activity due to climate change. This study presents the spatial and temporal patterns of wildland fires in the Mongolian Plateau (MP) using Collection 6 NASA MCD64A1 500 m global Burned Area product from 2001 to 2021. Both inter- and intra-annual fire trends and variations in two subregions, Mongolia and China’s Inner Mongolia, were analyzed. The results indicated that an average area of 1.3 × 104 km2 was consumed by fire per year in the MP. The fire season has two peaks: spring (March, April, and May) and autumn (September, October, and December). The profiles of the burnt area for each subregion exhibit distinct seasonality. The majority of wildfires occurred in the northeastern and southwestern regions of the MP, on the border between Mongolia and China. There were 2.7 × 104 km2 of land burned by wildfires in the MP from 2001 to 2021, 57% of which occurred in spring. Dornod aimag (province) of Mongolia is the most fire-prone region, accounting for 51% of the total burned area in the MP, followed by Hulunbuir, at 17%, Sukhbaatar, at 9%, and Khentii at 8%. The changing patterns of spatiotemporal patterns of fire in the MP were analyzed by using a spatiotemporal cube analysis tool, ArcGIS Pro 3.0.2. The results suggested that fires showed a decreasing trend overall in the MP from 2001 to 2021. Fires in the southern region of Dornod aimag and eastern parts of Great Xing’an Mountain showed a sporadic increasing trend. Therefore, these areas should be priorities for future fire protection for both Mongolia and China.

Funder

International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia Autonomous Region

Key R&D and Achievement Transformation Program of Inner Mongolia Autonomous Region

Co-Funded Brain Circulation Scheme2 of TÜBİTAK

The Marie Curie Action COFUND

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Wildfires and global change;Pausas;Front. Ecol. Environ.,2021

2. Vegetation fires in the Anthropocene;Bowman;Nat. Rev. Earth Environ.,2020

3. Wildfires, Global Climate Change, and Human Health;Xu;N. Engl. J. Med.,2020

4. Aotearoa New Zealand’s 21st-Century Wildfire Climate;Melia;Earths Future,2022

5. How to prioritize species recovery after a megafire;Ward;Conserv. Biol.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3