Abstract
Burned area is a critical input to biomass burning carbon emissions algorithms and for understanding variability in fire activity due to climate change. This study presents the spatial and temporal patterns of wildland fires in the Mongolian Plateau (MP) using Collection 6 NASA MCD64A1 500 m global Burned Area product from 2001 to 2021. Both inter- and intra-annual fire trends and variations in two subregions, Mongolia and China’s Inner Mongolia, were analyzed. The results indicated that an average area of 1.3 × 104 km2 was consumed by fire per year in the MP. The fire season has two peaks: spring (March, April, and May) and autumn (September, October, and December). The profiles of the burnt area for each subregion exhibit distinct seasonality. The majority of wildfires occurred in the northeastern and southwestern regions of the MP, on the border between Mongolia and China. There were 2.7 × 104 km2 of land burned by wildfires in the MP from 2001 to 2021, 57% of which occurred in spring. Dornod aimag (province) of Mongolia is the most fire-prone region, accounting for 51% of the total burned area in the MP, followed by Hulunbuir, at 17%, Sukhbaatar, at 9%, and Khentii at 8%. The changing patterns of spatiotemporal patterns of fire in the MP were analyzed by using a spatiotemporal cube analysis tool, ArcGIS Pro 3.0.2. The results suggested that fires showed a decreasing trend overall in the MP from 2001 to 2021. Fires in the southern region of Dornod aimag and eastern parts of Great Xing’an Mountain showed a sporadic increasing trend. Therefore, these areas should be priorities for future fire protection for both Mongolia and China.
Funder
International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China
National Natural Science Foundation of China
Natural Science Foundation of Inner Mongolia Autonomous Region
Key R&D and Achievement Transformation Program of Inner Mongolia Autonomous Region
Co-Funded Brain Circulation Scheme2 of TÜBİTAK
The Marie Curie Action COFUND
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献