Abstract
It is difficult to accurately identify the winter wheat acreage in the Jianghuai region of China, and the fusion of high-resolution images and medium-resolution image data can improve the image quality and facilitate the identification and acreage extraction of winter wheat. Therefore, the objective of this study is to improve the accuracy of China’s medium-spatial resolution image data (environment and disaster monitoring and forecasting satellite data, HJ-1/CCD) in extracting the large area of winter wheat planted. The fusion and object-oriented classification of the 30 m × 30 m HJ-1/CCD multispectral image and 2 m × 2 m GF-1 panchromatic image (GF-1/PMS) of winter wheat at the jointing stage in the study area were studied. The GF-1/PMS panchromatic images were resampled at 8 m, 16 m and 24 m to produce panchromatic images with four spatial resolutions, including 2 m. They were fused with HJ-1/CCD multispectral images by Gram Schmidt (GS). The quality of the fused images was evaluated to pick adequate scale images for the field pattern of winter wheat cultivation in the study area. The HJ-1/CCD multispectral image was resampled to obtain an image with the same scale as the suitable scale fused image. In the two images, the training samples SFI (samples of fused image) and SRI (samples of resampled image) containing spectral and texture information were selected. The fused image (FI) and resampled image (RI) were used for winter wheat acreage extraction using an object-oriented classification method. The results indicated that the fusion effect of 16 m × 16 m fused image was better than 2 m × 2 m, 8 m × 8 m and 24 m × 24 m fused images, with mean, standard deviation, average gradient and correlation coefficient values of 161.15, 83.01, 4.55 and 0.97, respectively. After object-oriented classification, the overall accuracy of SFI for the classification of resampled image RI16m was 92.22%, and the Kappa coefficient was 0.90. The overall accuracy of SFI for the classification of fused image FI16m was 94.44%, and the Kappa coefficient was 0.93. The overall accuracy of SRI for the classification of resampled image RI16m was 84.44%, and the Kappa coefficient was 0.80. The classification effect of SFI for the fused image FI16m was the best, indicating that the object-oriented classification method combined with the fused image and the extraction samples of the fused image (SFI) could extract the winter wheat planting area with precision. In addition, the object-oriented classification method combining resampled images and the extraction samples of fused images (SFI) could extract the winter wheat planting area more effectively. These results indicated that the combination of medium spatial resolution HJ-1/CCD images and high spatial resolution GF-1 satellite images could effectively extract the planting area information of winter wheat in large regions.
Funder
National Key Research and Development Program of China
Jiangsu Agricultural Science and Technology Innovation Fund
Subject
General Earth and Planetary Sciences
Reference42 articles.
1. A model of estimating winter wheat yield based on tm image and yield formation;Li;J. Triticeae Crops,2007
2. Estimation model of winter wheat disease based on meteorological factors and spectral information;Li;Food Prod. Process. Nutr.,2020
3. A hybrid method combining pixel-based and object-oriented methods and its application in Hungary using Chinese HJ-1 satellite images;Li;Int. J. Remote Sens.,2013
4. Development of remote sensing monitoring information system for county scale winter wheat diseases;Li;Jiangsu J. Agric. Sci.,2019
5. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring;Zhou;J. Integr. Agr.,2017
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献