CO2 Gasification Reactivity and Syngas Production of Greek Lignite Coal and Ex-Situ Produced Chars under Non-Isothermal and Isothermal Conditions: Structure-Performance Relationships

Author:

Lampropoulos Athanasios,Binas Vassilios D.ORCID,Zouridi LeilaORCID,Athanasiou Costas,Montes-Morán Miguel A.ORCID,Menéndez J. AngelORCID,Konsolakis MichalisORCID,Marnellos George E.ORCID

Abstract

The presented work explores the structural properties, gasification reactivity, and syngas production of Greek lignite fuel (LG) and ex-situ produced chars during CO2 gasification. Three different slow pyrolysis protocols were employed for char production involving torrefaction at 300 °C (LG300), mild-carbonization at 500 °C (LG500), and carbonization at 800 °C (LG800). Physicochemical characterization studies, including proximate and ultimate analysis, X-ray Diffraction (XRD), and Raman spectroscopy, revealed that the thermal treatment under inert atmospheres leads to chars with increased fixed carbon content and less ordered surface structures. The CO2 gasification reactivity of pristine LG and as-produced chars was examined by thermogravimetric (TG) analysis and in batch mode gasification tests under both isothermal and non-isothermal conditions. The key parameters affecting the devolatilization and gasification steps in the overall process toward CO-rich gas mixtures were thoroughly explored. The gasification performance of the examined fuels in terms of carbon conversion, instant CO production rate, and syngas generation revealed an opposite reactivity order during each stage. TG analysis demonstrated that raw lignite (LG) was more reactive during the thermal devolatilization phase at low and intermediate temperatures (da/dtmax,devol. = 0.022 min−1). By contrast, LG800 exhibited superior gasification reactivity at high temperatures (da/dtmax,gas. = 0.1 min−1). The latter is additionally corroborated by the enhanced CO formation of LG800 samples under both non-isothermal (5.2 mmol) and isothermal (28 mmol) conditions, compared to 4.1 mmol and 13.8 mmol over the LG sample, respectively. The pronounced CO2 gasification performance of LG800 was attributed to its higher fixed carbon content and disordered surface structure compared to LG, LG300, and LG500 samples.

Funder

European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE - INNOVATE

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference81 articles.

1. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries

2. Statistical Review of World Energy, 2020;Looney,2020

3. Coal 2020,2020

4. Energy Policies IEA Countries: Greece 2017 Review,2017

5. Europe’s 2030 Climate and Energy Targets. Research & Innovation Actions,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3