A Dielectric Resonator Antenna with Enhanced Gain and Bandwidth for 5G Applications

Author:

Ali Irfan,Jamaluddin Mohd HaizalORCID,Gaya Abinash,Rahim Hasliza A.

Abstract

In this paper, a dielectric resonator antenna (DRA) with high gain and wide impedance bandwidth for fifth-generation (5G) wireless communication applications is proposed. The dielectric resonator antenna is designed to operate at higher-order T E δ 15 x mode to achieve high antenna gain, while a hollow cylinder at the center of the DRA is introduced to improve bandwidth by reducing the quality factor. The DRA is excited by a 50   Ω microstrip line with a narrow aperture slot. The reflection coefficient, antenna gain, and radiation pattern of the proposed DRAs are analyzed using the commercially available full-wave electromagnetic simulation tool CST Microwave Studio (CST MWS). In order to verify the simulation results, the proposed antenna structures were fabricated and experimentally validated. Measured results of the fabricated prototypes show a 10-dB return loss impedance bandwidth of 10.7% (14.3–15.9GHz) and 16.1% (14.1–16.5 GHz) for DRA1 and DRA2, respectively, at the operating frequency of 15 GHz. The results show that the designed antenna structure can be used in the Internet of things (IoT) for device-to-device (D2D) communication in 5G systems.

Funder

Universiti Teknologi Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wideband Hemisphere Dielectric Resonator Antenna for Next 5G Networks;2024 11th International Conference on Wireless Networks and Mobile Communications (WINCOM);2024-07-23

2. Dielectric Resonator Antenna Via Substrate Integrated Coplanar Waveguide Feed Mechanism for the N78 5G Band;2024 10th International Conference on Applied System Innovation (ICASI);2024-04-17

3. Cylindrical DRA-Based Antenna Engraved with Meandered Slot for UWB Applications;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

4. Next-Generation Multiband Wireless Systems: A Compact CSSR-Based MIMO Dielectric Resonator Antenna Approach;IEEE Access;2024

5. Using generative model for intelligent design of dielectric resonator antennas;Microwave and Optical Technology Letters;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3