Affiliation:
1. National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China
2. Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing 100081, China
3. Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, Beijing 100081, China
4. China Meteorological Administration Training Centre, Beijing 100081, China
Abstract
The Tibetan Plateau vortex (TPV), as an α-scale mesoscale weather system, often brings severe weather conditions like torrential rain and severe convective storms. Based on the detections from the Global Precipitation Measurement (GPM) Core Observatory’s Dual-frequency Precipitation Radar (DPR) and the FY-4A satellite’s Advanced Geostationary Radiation Imager (AGRI), combined with ERA5 reanalysis data, the precipitation characteristics of a TPV moving eastward during 8–13 July 2021 at different developmental stages are explored in this study. It was clear that the near-surface precipitation rate of the TPV during the initial stage at the eastern Tibetan Plateau (TP) was below 1 mm·h−1, implying overall weak precipitation dominated by stratiform clouds. After moving out of the TP, the radar reflectivity factor (Ze), precipitation rate, and normalized intercept parameter (dBNw) significantly increased, while the proportion of convective clouds gradually rose. Following the TPV movement, the distribution range and vertical thickness of Ze, mass-weighted mean diameter (Dm), and dBNw tended to increase. The high-frequency region of Ze appeared at 15–20 dBZ, while Dm and dBNw occurred at around 1 mm and 33 mm−1·m−3, respectively. Near the melting layer, Ze was characterized by a significant increase due to the aggregation and melting of ice crystals. The precipitation rate of convective clouds was generally greater than that of stratiform clouds, whilst both of them increased during the movement of the TPV. Particularly, at 01:00 on 12 July, there was a significant increase in the precipitation rate and Dm of convective clouds, while dBNw noticeably decreased. These findings could provide valuable insights into the three-dimensional structure and microphysical characteristics of the precipitation during the movement of the TPV, contributing to a better understanding of cloud precipitation mechanisms.
Funder
National Natural Science Foundation of China
Fengyun Application Pioneering Project