Enhanced Land-Cover Classification through a Multi-Stage Classification Strategy Integrating LiDAR and SIF Data

Author:

Wang Ailing1,Shi Shuo123,Man Weihui4,Qu Fangfang1

Affiliation:

1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

2. State Key Laboratory of Geo-Information Engineering, Xi’an 710054, China

3. Wuhan Institute of Quantum Technology, Wuhan 430206, China

4. Shandong Provincial Lunan Geology and Exploration Institute, Jining 272100, China

Abstract

Light detection and ranging (LiDAR) offers high-precision, 3D information, and the ability to rapidly acquire data, giving it a significant advantage in timely resource monitoring. Currently, LiDAR is widely utilized in land-cover classification tasks. However, the complexity and uneven distribution of land-cover types in rural and township settings pose additional challenges for fine-scale classification. Although the geometric features of LiDAR can provide valuable insights and have been extensively explored, distinguishing between objects with similar 3D characteristics has considerable room for improvement, particularly in complex scenarios where the introduction of additional attribute information is necessary. To address these challenges, this work proposes the integration of solar-induced chlorophyll fluorescence (SIF) features to assist and optimize LiDAR data for land-cover classification, leveraging the sensitivity of SIF to vegetation physiological characteristics. Moreover, a multi-stage classification strategy is introduced to enhance the utilization of SIF information. The implementation of this approach achieves a maximum classification accuracy of 92.45%, yielding satisfactory results with low computational costs. This outcome validates the feasibility of applying SIF information in land-cover classification. Furthermore, the results obtained through the multi-stage classification strategy demonstrate improvements ranging from 6.65% to 9.12% compared with land-cover classification relying solely on LiDAR, effectively highlighting the optimization role of SIF in enhancing LiDAR-based land-cover classification, particularly in complex rural and township environments. Our approach offers a robust framework for precise and efficient land-cover classification by leveraging the combined strengths of LiDAR and SIF.

Funder

Natural Science Foundation of Hubei Province

State Key Laboratory of Geo-Information Engineering

Wuhan University Specific Fund for Major School-level Internationalization Initiatives

Fundamental Research Fund Program of LIESMARS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3