Vertical Accuracy Assessment and Improvement of Five High-Resolution Open-Source Digital Elevation Models Using ICESat-2 Data and Random Forest: Case Study on Chongqing, China

Author:

Xu Weifeng12ORCID,Li Jun123ORCID,Peng Dailiang4,Yin Hongyue12,Jiang Jinge12,Xia Hongxuan12,Wen Di12

Affiliation:

1. College of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China

2. Key Laboratory of GIS Application of Chongqing, Chongqing 401331, China

3. Chongqing Key Laboratory of Earth Surface Processes and Environmental Remote Sensing in Three Gorges Reservoir Area, Chongqing 401331, China

4. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Digital elevation models (DEMs) are widely used in digital terrain analysis, global change research, digital Earth applications, and studies concerning natural disasters. In this investigation, a thorough examination and comparison of five open-source DEMs (ALOS PALSAR, SRTM1 DEM, SRTM3 DEM, NASADEM, and ASTER GDEM V3) was carried out, with a focus on the Chongqing region as a specific case study. By utilizing ICESat-2 ATL08 data for validation and employing a random forest model to refine terrain variables such as slope, aspect, land cover, and landform type, a study was undertaken to assess the precision of DEM data. Research indicates that spatial resolution significantly impacts the accuracy of DEMs. ALOS PALSAR demonstrated satisfactory performance, reducing the corrected root mean square error (RMSE) from 13.29 m to 9.15 m. The implementation of the random forest model resulted in a significant improvement in the accuracy of the 30 m resolution NASADEM product. This improvement was supported by a decrease in the RMSE from 38.24 m to 9.77 m, demonstrating a significant 74.45% enhancement in accuracy. Consequently, the ALOS PALSAR and NASADEM datasets are considered the preferred data sources for mountainous urban areas. Furthermore, the study established a clear relationship between the precision of DEMs and slope, demonstrating a consistent decline in precision as slope steepness increases. The influence of aspect on accuracy was considered to be relatively minor, while vegetated areas and medium-to-high-relief mountainous terrains were identified as the main challenges in attaining accuracy in the DEMs. This study offers valuable insights into selecting DEM datasets for complex terrains in mountainous urban areas, highlighting the critical importance of choosing the appropriate DEM data for scientific research.

Funder

National Key R&D Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3