Cooperative Jamming Resource Allocation with Joint Multi-Domain Information Using Evolutionary Reinforcement Learning

Author:

Xin Qi1ORCID,Xin Zengxian2,Chen Tao1

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China

2. Shanghai Radio Equipment Research Institute, Shanghai 201109, China

Abstract

Addressing the formidable challenges posed by multiple jammers jamming multiple radars, which arise from spatial discretization, many degrees of freedom, numerous model input parameters, and the complexity of constraints, along with a multi-peaked objective function, this paper proposes a cooperative jamming resource allocation method, based on evolutionary reinforcement learning, that uses joint multi-domain information. Firstly, an adversarial scenario model is established, characterizing the interaction between multiple jammers and radars based on a multi-beam jammer model and a radar detection model. Subsequently, considering real-world scenarios, this paper analyzes the constraints and objective function involved in cooperative jamming resource allocation by multiple jammers. Finally, accounting for the impact of spatial, frequency, and energy domain information on jamming resource allocation, matrices representing spatial condition constraints, jamming beam allocation, and jamming power allocation are formulated to characterize the cooperative jamming resource allocation problem. Based on this foundation, the joint allocation of the jamming beam and jamming power is optimized under the constraints of jamming resources. Through simulation experiments, it was determined that, compared to the dung beetle optimizer (DBO) algorithm and the particle swarm optimization (PSO) algorithm, the proposed evolutionary reinforcement learning algorithm based on DBO and Q-Learning (DBO-QL) offers 3.03% and 6.25% improvements in terms of jamming benefit and 26.33% and 50.26% improvements in terms of optimization success rate, respectively. In terms of algorithm response time, the proposed hybrid DBO-QL algorithm has a response time of 0.11 s, which is 97.35% and 96.57% lower than the response times of the DBO and PSO algorithms, respectively. The results show that the method proposed in this paper has good convergence, stability, and timeliness.

Funder

Shanghai Aerospace Science and Technology Innovation Fund

Publisher

MDPI AG

Reference40 articles.

1. An overview of cognitive radar: Past, present, and future;Gurbuz;IEEE Aerosp. Electron. Syst. Mag.,2019

2. Haykin, S. (2010, January 10–14). New generation of radar systems enabled with cognition. Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA.

3. Cognitive radar: A way of the future;Haykin;IEEE Signal Process. Mag.,2006

4. Darpa, A. (2010). Behavioral learning for adaptive electronic warfare. Darpa-BAA-10-79, Defense Advanced Research Projects Agency.

5. DARPA seeks proposals for adaptive radar countermeasures;Haystead;J. Electron. Def.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3