Author:
Luo Zhimin,Ma Jinlong,Jiang Zhiqiang
Abstract
For the multi-energy power system composed of thermal power, wind power, and a pumped-storage power station aiming at minimizing coal consumption of the power grid, an optimal dispatch model is established in this paper. Its advantage is to allow the power grid to accept a high proportion of new energy while ensuring power demand. The dynamic programming method is used to solve the problem. In the solution process, the traditional dynamic programming method is improved by introducing the penalty function and the dynamic value of the state variable, which can ensure the reliability of the power supply while achieving the optimization goal, as well as realize the full utilization of energy. Using the example of a high proportion of wind power systems with a pumped-storage power station as the energy storage mode and considering the relevant constraints after the heating transformation of the thermal power plant, our built model solves these challenges. The results show that when the maximum pumping power of the pumped-storage power station reaches 1138 MW and the maximum generating power reaches 755 MW, the wind curtailment and power rationing during the off-peak period of heating can be reduced from the previous 58,158 MWH and 46,838 MWH to almost 0, and the wind curtailment and power rationing during the peak period of heating can be reduced from the previous 77,656 MWH and 53,780 MWH to almost 0, so as to realize the flexible operation of the power grid.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献