Theoretical and Experimental Investigations of Oxygen Activation Effect of Carbon Nanofibers Interacting with Polypyrrole

Author:

Xie Yibing12ORCID,Wang Yiting12,Wang Lijun1,Liang Jiawei1

Affiliation:

1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

2. Suzhou Research Institute, Southeast University, Suzhou 215123, China

Abstract

Theoretical modeling calculations and experimental measurements were adopted to investigate the oxygen activation effect of carbon nanofibers (CNFs) interacting with polypyrrole (PPY). The CNF undergoes a hydrothermal oxidation process to form epoxy and hydroxyl groups containing carbon nanofibers (CNF-O). The oxygen activation effect of CNF on the electronic and electrochemical properties was investigated through the interfacial interaction between CNF-O and PPY. Theoretical modeling calculation discloses that CNF-O/PPY exhibits lower electronic bandgaps (0.64 eV), a higher density of states (10.039 states/eV), and a lower HOMO–LUMO molecular orbital energy gap (0.077 eV) than CNF/PPY (1.56 eV, 7.946 states/eV and 0.112 eV), presenting its superior electronic conductivity and electroactivity. The Mulliken population and charge density difference analysis disclose the stronger interface interaction of CNF-O/PPY caused by epoxy and hydroxyl groups. Cyclic voltammogram measurements reveal that CNF-O/PPY exhibits a higher response current and a higher specific capacitance (221.1–112.2 mF g−1) than CNF/PPY (57.6–24.2 mF g−1) at scan rates of 5–200 mV s−1. Electrochemical impendence spectrum measurements disclose that CNF-O/PPY exhibits a lower charge transfer resistance (0.097 Ω), a lower ohmic resistance (0.336 Ω), a lower Warburg impedance (317 Ω), and a higher double-layer capacitance (0.113 mF) than CNF/PPY (1.419 Ω, 9.668 Ω, 7865 Ω, and 0.015 mF). Both theoretical and experimental investigations prove that CNF-O/PPY presents an intensified intermolecular interaction rather than CNF/PPY. The promotive oxygen activation effect of CNF could contribute to improving the electronic and electrochemical properties of CNF-O/PPY.

Funder

Big Data Computing Center of the Southeast University, China

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3