Approximating a Minimum Dominating Set by Purification

Author:

Parra Inza Ernesto1ORCID,Vakhania Nodari1ORCID,Sigarreta Almira José María2ORCID,Hernández-Aguilar José Alberto3ORCID

Affiliation:

1. Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico

2. Facultad de Matemáticas, Universidad Autónoma de Guerrero, Acapulco de Juárez 39650, Guerrero, Mexico

3. Facultad de Contaduría, Administración e Informática, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico

Abstract

A dominating set of a graph is a subset of vertices such that every vertex not in the subset has at least one neighbor within the subset. The corresponding optimization problem is known to be NP-hard. It is proved to be beneficial to separate the solution process in two stages. First, one can apply a fast greedy algorithm to obtain an initial dominating set and then use an iterative procedure to purify (reduce) the size of this dominating set. In this work, we develop the purification stage and propose new purification algorithms. The purification procedures that we present here outperform, in practice, the earlier known purification procedure. We have tested our algorithms for over 1300 benchmark problem instances. Compared to the estimations due to known upper bounds, the obtained solutions are about seven times better. Remarkably, for the 500 benchmark instances for which the optimum is known, the optimal solutions are obtained for 46.33% of the tested instances, whereas the average error for the remaining instances is about 1.01.

Funder

CCyTEM

Publisher

MDPI AG

Reference26 articles.

1. Garey, M.R., and Johnson, D.S. (1979). Computers and Intractability, Freeman.

2. Berge, C. (1962). The Theory of Graphs and Its Applications, Methuen & Co, Ltd.

3. Ore, O. (1962). Theory of Graphs, AMS Colloquium Publications.

4. Haynes, T.W., Hedetniemi, S.T., and Slater, P.J. (1998). Domination in Graphs, Marcel Dekker Publications. Advanced Topics.

5. Haynes, T.W. (2017). Domination in Graphs, Routledge. Advanced Topics.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3