Use of Ensemble-Based Gridded Precipitation Products for Assessing Input Data Uncertainty Prior to Hydrologic Modeling

Author:

Pokorny ScottORCID,Stadnyk Tricia A.ORCID,Lilhare RajtantraORCID,Ali Genevieve,Déry Stephen J.,Koenig Kristina

Abstract

The spatial and temporal performance of an ensemble of five gridded climate datasets (precipitation) (North American Regional Reanalysis, European Centre for Medium-Range Weather Forecasts interim reanalysis, European Union Water and Global Change (WATCH) Watch Forcing data ERA-Interim, Global Forcing Data-Hydro, and The Australian National University spline interpolation) was evaluated towards quantifying gridded precipitation data ensemble uncertainty for hydrologic model input. Performance was evaluated over the Nelson–Churchill Watershed via comparison to two ground-based climate station datasets for year-to-year and season-to-season periods (1981–2010) at three spatial discretizations: distributed, sub-basin aggregation, and full watershed aggregation. All gridded datasets showed spatial performance variations, most notably in year-to-year total precipitation bias. Absolute minimum and maximum realizations were generated and assumed to represent total possible uncertainty bounds of the ensemble. Analyses showed that high magnitude precipitation events were often outside the uncertainty envelope; some increase in spatial aggregation, however, enveloped more observations. Results suggest that hydrologic models can reduce input uncertainty with some spatial aggregation, but begin to lose information as aggregation increases. Uncertainty bounds also revealed periods of elevated uncertainty. Assessing input ensemble bounds can be used to include high and low uncertainty periods in hydrologic model calibration and validation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3