The Diffraction Research of Cylindrical Block Effect Based on Indoor 45 GHz Millimeter Wave Measurements

Author:

Li Xingrong,Li Yongqian,Li Baogang

Abstract

In this paper, four kinds of block diffraction models were proposed on the basis of the uniform geometrical theory of diffraction, and these models were validated by experiments with 45 GHz millimeter wave in the laboratory. The results are in agreement with the theoretical analysis. Some errors exist in the measurement results because of the unsatisfactory experimental environment. Single conducting cylindrical block measurement error was less than 0.5 dB, and single man block measurement error in the school laboratory was less than 1 dB, while in the factory laboratory environment, the peak to peak error reached 1.6 dB. Human body block attenuation was about 5.9–9.2 dB lower than that of the single conducting cylinder. A human body and a conducting cylinder were used together as a block in model (c) and model (d), but the positions of the cylinder in the two models were different. The measurement results showed that the attenuation of model (d) is about 3 dB higher than that of model (c).

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Information Systems

Reference16 articles.

1. 5G: Personal mobile internet beyond what cellular did to telephony

2. 5G wireless communication systems: prospects and challenges [Guest Editorial]

3. Modeling the Impact of Human Blockers in Millimeter Wave Radio Links http://www.interdigital.com/research_papers/2012_01_25_modeling_the_impact_of_human_blockers_in_millimeter_wave_radio_links

4. Attenuation by a Human Body and Trees as well as Material Penetration Loss in 26 and 39 GHz Millimeter Wave Bands

5. Research on human blockage effect for indoor 26 GHz mm-wave communications;Geng;J. Commun.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3