Modulation of the Liver Protein Carbonylome by the Combined Effect of Marine Omega-3 PUFAs and Grape Polyphenols Supplementation in Rats Fed an Obesogenic High Fat and High Sucrose Diet

Author:

Méndez LucíaORCID,Muñoz Silvia,Miralles-Pérez Bernat,Nogués Maria Rosa,Ramos-Romero Sara,Torres Josep Lluis,Medina Isabel

Abstract

Diet-induced obesity has been linked to metabolic disorders such as cardiovascular diseases and type 2 diabetes. A factor linking diet to metabolic disorders is oxidative stress, which can damage biomolecules, especially proteins. The present study was designed to investigate the effect of marine omega-3 polyunsaturated fatty acids (PUFAs) (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) and their combination with grape seed polyphenols (GSE) on carbonyl-modified proteins from plasma and liver in Wistar Kyoto rats fed an obesogenic diet, namely high-fat and high-sucrose (HFHS) diet. A proteomics approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labelling of protein carbonyls, visualization of FTSC-labelled protein on 1-DE or 2-DE gels, and protein identification by MS/MS was used for the protein oxidation assessment. Results showed the efficiency of the combination of both bioactive compounds in decreasing the total protein carbonylation induced by HFHS diet in both plasma and liver. The analysis of carbonylated protein targets, also referred to as the ‘carbonylome’, revealed an individual response of liver proteins to supplements and a modulatory effect on specific metabolic pathways and processes due to, at least in part, the control exerted by the supplements on the liver protein carbonylome. This investigation highlights the additive effect of dietary fish oils and grape seed polyphenols in modulating in vivo oxidative damage of proteins induced by the consumption of HFHS diets.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3