Multi-Decadal Trends in Aerosol Optical Depth of the Main Aerosol Species Based on MERRA-2 Reanalysis: A Case Study in the Baltic Sea Basin

Author:

Mancinelli Enrico1ORCID,Passerini Giorgio2ORCID,Virgili Simone2ORCID,Rizza Umberto3ORCID

Affiliation:

1. Department of Pure and Applied Sciences, University of Urbino, 61029 Urbino, Italy

2. Department of Industrial Engineering and Mathematical Sciences, Marche Polytechnic University, 60131 Ancona, Italy

3. Institute of Atmospheric Sciences and Climate, National Research Council, 73100 Lecce, Italy

Abstract

This study analyses the trends of total aerosol and the main aerosol species over nine capitals in the Baltic Sea basin from 1989 to 2019 based on the Modern-Era Retrospective Analysis for Research and Applications, Version 2 Reanalysis. Aerosol speciation includes mineral dust, sea salt, sulphate (SO4), organic carbon (OC), and black carbon (BC). The mean total aerosol optical depth (AOD) values were the highest (up to 0.216) over the continental capitals (i.e., Warsaw, Berlin, and Vilnius). For each capital, the mean SO4 AOD was the main aerosol species, with a trend specular to total AOD. Apart from Warsaw, the mean BC AOD was the aerosol species with the lowest level. The composition of aerosols changed with respect to the species of anthropogenic origins (i.e., SO4, OC, and BC), with the percentage contribution to the total AOD decreasing for the SO4 AOD and increasing for the BC AOD. Also, the OC AOD showed an increase in the percentage contribution to total AOD for Copenhagen, Oslo, Stockholm, and the continental capitals. Anthropogenic aerosols contributed up to 90.3% of the total AOD, with the highest values over the continental capitals. For each capital, the minimum in the percentage contribution of anthropogenic AOD was between 2007 and 2008, likely due to the global financial crisis. Anthropogenic AOD as a percentage of the total AOD decreased from 1989 to 2008. Both the total and the SO4 AODs decreased over each capital. By contrast, the BC AOD increased over Stockholm, and both the OC and BC AODs increased over Berlin, Copenhagen, and Oslo. The decoupling of carbonaceous aerosols and the SO4 AOD trends was likely due to concurrent factors such as biomass burning and low-sulphur fuel policies. From 2000 to 2019, the inverse relationships between gross domestic products and SO4 AODs suggest a relative decoupling of economic growth from fossil fuels for Oslo, Stockholm, Tallinn, and Vilnius.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3