An Adaptive Noisy Label-Correction Method Based on Selective Loss for Hyperspectral Image-Classification Problem

Author:

Li Zina1,Yang Xiaorui2,Meng Deyu1,Cao Xiangyong3

Affiliation:

1. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Statistics and Data Science, Nankai University, Tianjin 300072, China

3. School of Automation, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Due to the intricate terrain and restricted resources, hyperspectral image (HSI) datasets captured in real-world scenarios typically contain noisy labels, which may seriously affect the classification results. To address this issue, we work on a universal method that rectifies the labels first and then trains the classifier with corrected labels. In this study, we relax the common assumption that all training data are potentially corrupted and instead posit the presence of a small set of reliable data points within the training set. Under this framework, we propose a novel label-correction method named adaptive selective loss propagation algorithm (ASLPA). Firstly, the spectral–spatial information is extracted from the hyperspectral image and used to construct the inter-pixel transition probability matrix. Secondly, we construct the trusted set with the known clean data and estimate the proportion of accurate labels within the untrusted set. Then, we enlarge the trusted set according to the estimated proportion and identify an adaptive number of samples with lower loss values from the untrusted set to supplement the trusted set. Finally, we conduct label propagation based on the enlarged trusted set. This approach takes full advantage of label information from the trusted and untrusted sets, and moreover the exploitation on the untrusted set can adjust adaptively according to the estimated noise level. Experimental results on three widely used HSI datasets show that our proposed ASLPA method performs better than the state-of-the-art label-cleaning methods.

Funder

National Key Research and Development Program of China

China NSFC Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3