Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification

Author:

Zhang Ning1ORCID,Chen He1,Chen Liang1,Wang Jue1,Wang Guoqing1ORCID,Liu Wenchao1

Affiliation:

1. National Key Laboratory of Science and Technology on Space-Born Intelligent Information Processing, Beijing Institute of Technology, Beijing 100081, China

Abstract

Performing remote sensing scene classification (RSSC) directly on satellites can alleviate data downlink burdens and reduce latency. Compared to convolutional neural networks (CNNs), the all-adder neural network (A2NN) is a novel basic neural network that is more suitable for onboard RSSC, enabling lower computational overhead by eliminating multiplication operations in convolutional layers. However, the extensive floating-point data and operations in A2NNs still lead to significant storage overhead and power consumption during hardware deployment. In this article, a shared scaling factor-based de-biasing quantization (SSDQ) method tailored for the quantization of A2NNs is proposed to address this issue, including a powers-of-two (POT)-based shared scaling factor quantization scheme and a multi-dimensional de-biasing (MDD) quantization strategy. Specifically, the POT-based shared scaling factor quantization scheme converts the adder filters in A2NNs to quantized adder filters with hardware-friendly integer input activations, weights, and operations. Thus, quantized A2NNs (Q-A2NNs) composed of quantized adder filters have lower computational and memory overheads than A2NNs, increasing their utility in hardware deployment. Although low-bit-width Q-A2NNs exhibit significantly reduced RSSC accuracy compared to A2NNs, this issue can be alleviated by employing the proposed MDD quantization strategy, which combines a weight-debiasing (WD) strategy, which reduces performance degradation due to deviations in the quantized weights, with a feature-debiasing (FD) strategy, which enhances the classification performance of Q-A2NNs through minimizing deviations among the output features of each layer. Extensive experiments and analyses demonstrate that the proposed SSDQ method can efficiently quantize A2NNs to obtain Q-A2NNs with low computational and memory overheads while maintaining comparable performance to A2NNs, thus having high potential for onboard RSSC.

Funder

National Natural Science Foundation for Young Scientists of China

Foundation

BIT Research and Innovation Promoting Project

Publisher

MDPI AG

Reference56 articles.

1. Convolutional neural networks for multimodal remote sensing data classification;Wu;IEEE Trans. Geosci. Remote Sens.,2021

2. Multisource remote sensing data classification with graph fusion network;Du;IEEE Trans. Geosci. Remote Sens.,2021

3. Hyperspectral image classification with convolutional neural network and active learning;Cao;IEEE Trans. Geosci. Remote Sens.,2020

4. Transferring CNN With Adaptive Learning for Remote Sensing Scene Classification;Wang;IEEE Trans. Geosci. Remote Sens.,2022

5. Channel-attention-based DenseNet network for remote sensing image scene classification;Tong;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3