Providing Fine Temporal and Spatial Resolution Analyses of Airborne Particulate Matter Utilizing Complimentary In Situ IoT Sensor Network and Remote Sensing Approaches

Author:

Dewage Prabuddha M. H.1ORCID,Wijeratne Lakitha O. H.1ORCID,Yu Xiaohe2,Iqbal Mazhar1,Balagopal Gokul1,Waczak John1ORCID,Fernando Ashen1ORCID,Lary Matthew D.1,Ruwali Shisir1,Lary David J.1ORCID

Affiliation:

1. Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA

2. Geospatial Information Science, The University of Texas at Dallas, Richardson, TX 75080, USA

Abstract

This study aims to provide analyses of the levels of airborne particulate matter (PM) using a two-pronged approach that combines data from in situ Internet of Things (IoT) sensor networks with remotely sensed aerosol optical depth (AOD). Our approach involved setting up a network of custom-designed PM sensors that could be powered by the electrical grid or solar panels. These sensors were strategically placed throughout the densely populated areas of North Texas to collect data on PM levels, weather conditions, and other gases from September 2021 to June 2023. The collected data were then used to create models that predict PM concentrations in different size categories, demonstrating high accuracy with correlation coefficients greater than 0.9. This highlights the importance of collecting hyperlocal data with precise geographic and temporal alignment for PM analysis. Furthermore, we expanded our analysis to a national scale by developing machine learning models that estimate hourly PM 2.5 levels throughout the continental United States. These models used high-resolution data from the Geostationary Operational Environmental Satellites (GOES-16) Aerosol Optical Depth (AOD) dataset, along with meteorological data from the European Center for Medium-Range Weather Forecasting (ECMWF), AOD reanalysis, and air pollutant information from the MERRA-2 database, covering the period from January 2020 to June 2023. Our models were refined using ground truth data from our IoT sensor network, the OpenAQ network, and the National Environmental Protection Agency (EPA) network, enhancing the accuracy of our remote sensing PM estimates. The findings demonstrate that the combination of AOD data with meteorological analyses and additional datasets can effectively model PM 2.5 concentrations, achieving a significant correlation coefficient of 0.849. The reconstructed PM 2.5 surfaces created in this study are invaluable for monitoring pollution events and performing detailed PM 2.5 analyses. These results were further validated through real-world observations from two in situ MINTS sensors located in Joppa (South Dallas) and Austin, confirming the effectiveness of our comprehensive approach to PM analysis. The US Environmental Protection Agency (EPA) recently updated the national standard for PM 2.5 to 9 μg/m 3, a move aimed at significantly reducing air pollution and protecting public health by lowering the allowable concentration of harmful fine particles in the air. Using our analysis approach to reconstruct the fine-time resolution PM 2.5 distribution across the entire United States for our study period, we found that the entire nation encountered PM 2.5 levels that exceeded 9 μg/m 3 for more than 20% of the time of our analysis period, with the eastern United States and California experiencing concentrations exceeding 9 μg/m 3 for over 50% of the time, highlighting the importance of regulatory efforts to maintain annual PM 2.5 concentrations below 9 μg/m 3.

Funder

NSF

EPA

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cutting-Edge Climate Analysis: Combining MLP-GRU and Remote Sensing Technologies;Remote Sensing in Earth Systems Sciences;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3