Integrated Multi-Scale Aircraft Detection and Recognition with Scattering Point Intensity Adaptiveness in Complex Background Clutter SAR Images

Author:

Ye Xuyuan1,Du Chuan1

Affiliation:

1. School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Detecting aircraft targets in Synthetic Aperture Radar (SAR) images is critical for military and civilian applications. However, due to SAR’s special imaging mechanism, aircraft targets often consist of scattering points with large fluctuations in intensity. This often leads to the detector failing to detect weak scattering points. Not only that, previous SAR image aircraft-object-detection models have focused more on detecting and locating targets, with little emphasis on target recognition. This paper proposes a scattering-point-intensity-adaptive detection and recognition network (SADRN). In order to correctly detect the target area, we propose a Self-adaptive Bell-shaped Kernel (SBK) within the detector, which constructs a bell-shaped two-dimensional distribution centered on the target center, making the detection “threshold” for the target decrease from the center towards the periphery, reducing the missed alarms of weak scattering points at the edges of the target. To help the model adapt to multi-scale targets, we propose the FADLA-34 backbone network, aggregating information from feature maps across different scales. We also embed CBAM into the detector, which enhances the attention to the target area in the spatial dimension and strengthens the extraction of useful features in the channel dimension, reducing interference from the complex background clutter on object detection. Furthermore, to integrate detection and recognition, we introduce the multi-task head, which utilizes the three feature maps from the backbone network to generate the detection boxes and categories of the targets. Finally, the SADRN achieves superior detection and recognition performance on the SAR-AIRcraft-1.0, exceeding other mainstream methods. Visualization and analysis further confirm the effectiveness and superiority of the SADRN.

Funder

Science and Technology on Electromagnetic Scattering Key Laboratory

Nanjing University of Information Science and Technology

Publisher

MDPI AG

Reference34 articles.

1. Multiple mode SAR raw data simulation and parallel acceleration for Gaofen-3 mission;Zhang;IEEE J. Sel. Top Appl. Earth Obs. Remote Sens.,2018

2. Synthetic aperture radar;Brown;IEEE Trans. Aerosp. Electron. Syst.,1967

3. A tutorial on synthetic aperture radar;Moreira;IEEE Geosci. Remote Sens. Mag.,2013

4. Radar CFAR Thresholding in Clutter and Multiple Target Situations;Rohling;IEEE Trans. Aerosp. Electron. Syst.,1983

5. Analysis of CA-CFAR processors for linear-law detection;Raghavan;IEEE Trans. Aerosp. Electron Syst.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3