Bayes R-CNN: An Uncertainty-Aware Bayesian Approach to Object Detection in Remote Sensing Imagery for Enhanced Scene Interpretation

Author:

Sharifuzzaman Sagar A. S. M.1ORCID,Tanveer Jawad2,Chen Yu3,Chan Jun Hoong4,Kim Hyung Seok1,Kallu Karam Dad5,Ahmed Shahzad6ORCID

Affiliation:

1. Department of AI and Robotics, Sejong University, Seoul 05006, Republic of Korea

2. Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea

3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

4. School of Computer Science, Peking University, Beijing 100871, China

5. Department of Robotics and Artificial Intelligence (R&AI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad H-12, Pakistan

6. Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea

Abstract

Remote sensing technology has been modernized by artificial intelligence, which has made it possible for deep learning algorithms to extract useful information from images. However, overfitting and lack of uncertainty quantification, high-resolution images, information loss in traditional feature extraction, and background information retrieval for detected objects limit the use of deep learning models in various remote sensing applications. This paper proposes a Bayes by backpropagation (BBB)-based system for scene-driven identification and information retrieval in order to overcome the above-mentioned problems. We present the Bayes R-CNN, a two-stage object detection technique to reduce overfitting while also quantifying uncertainty for each object recognized within a given image. To extract features more successfully, we replace the traditional feature extraction model with our novel Multi-Resolution Extraction Network (MRENet) model. We propose the multi-level feature fusion module (MLFFM) in the inner lateral connection and a Bayesian Distributed Lightweight Attention Module (BDLAM) to reduce information loss in the feature pyramid network (FPN). In addition, our system incorporates a Bayesian image super-resolution model which enhances the quality of the image to improve the prediction accuracy of the Bayes R-CNN. Notably, MRENet is used to classify the background of the detected objects to provide detailed interpretation of the object. Our proposed system is comprehensively trained and assessed utilizing the state-of-the-art DIOR and HRSC2016 datasets. The results demonstrate our system’s ability to detect and retrieve information from remote sensing scene images.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3