Prediction of Deformation in Expansive Soil Landslides Utilizing AMPSO-SVR

Author:

Chen Zi1,Huang Guanwen123,Zhang Yongzhi1

Affiliation:

1. School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China

2. Key Laboratory of Ecological Geology and Disaster Prevention, Ministry of Natural Resources, Xi’an 710054, China

3. Smart-BDS Shaanxi University Engineering Research Center, Xi’an 710054, China

Abstract

A non-periodic “step-like” variation in displacement is exhibited owing to the repeated instability of expansive soil landslides. The dynamic prediction of deformation for expansive soil landslides has become a challenge in actual engineering for disaster prevention and mitigation. Therefore, a support vector regression prediction (AMPSO-SVR) model based on adaptive mutation particle swarm optimization is proposed, which is suitable for small samples of data. The shallow displacement is decomposed into a trend component and fluctuating component by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the trend displacement is predicted by cubic polynomial fitting. In this paper, the multiple disaster-inducing factors of expansive landslides and the time hysteresis effect between displacement and its influencing factors are fully considered, and the crucial influencing factors which eliminate the time lag effect and state factors are input into the model to predict the fluctuation displacement. Monitoring data in the Ningming area of China are employed for the model validation. The predicted results are compared with those of the traditional model. The model performance is evaluated through indicators such as the goodness of fit R2 and root mean square error RMSE. The results show that the prediction RMSE of the new model for three monitoring stations can reach 2.6 mm, 6.6 mm, and 2.5 mm, respectively. Compared with the common Grid search support vector regression (GS-SVR), the Particle Swarm Optimization Support Vector Regression (PSO-SVR) and Back Propagation Neural Network (BPNN) models have average improvements of 58.4%, 38.1%, and 25.2% respectively. The goodness of fit R2 is superior to 0.99 in the new method. The proposed model can effectively be deployed for the displacement prediction of non-periodic stepped expansive soil landslides driven by multiple influencing factors, providing a reference idea for the deformation prediction of expansive soil landslides.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3