Elevation Changes of A’nyemaqen Snow Mountain Revealed with Satellite Remote Sensing

Author:

Lin Huai1,Yang Yuande234,Li Leiyu2ORCID,Wang Qihua2,Guo Minyi1

Affiliation:

1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

2. Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China

3. Key Laboratory of Polar Environment Monitoring and Public Governance, Ministry of Education, Wuhan 430079, China

4. Midui Glacier–Guangxie Glacial Lake Disaster Field Scientific Observation and Research Station in Tibet Autonomous Region, Northwest Institute of Eco–Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

A’nyemaqen Snow Mountain (ASM) is the largest glacier area in the Yellow River source area and has been experiencing significant ablation in recent years. To investigate spatial–temporal elevation changes in ASM, a 21–year Digital Elevation Model (DEM) time series was obtained using the MicMac ASTER (MMASTER) algorithm and ASTER L1A V003 data. It covers the period from January 2002 to January 2023. The mean elevation of ASM decreased by −7.88 ± 3.37 m during this period, with highly spatial variation. The elevation decrease occurred mainly in the lower elevations and opposite in the higher elevations. The corresponding elevation decrease was −12.99 ± 11.29 and −4.45 ± 11.36 m at the southern Yehelong Glacier and the northern Weigeledangxiong Glacier, respectively. Moreover, there exists a temporal variation in ASM. The maximum elevation was observed in February for both ASM and the southern Yehelong Glacier but March for Weigeledangxiong Glacier, with about 1 month lagged. With the elevation time series and climate data from ERA5 datasets, we applied the random forest technique and found that the temperature is the main factor to elevation change in ASM. Furthermore, the response of elevation changes to temperature appeared with a lag and varied with the location. Based on the elevation time series, the ARIMA model was further used to forecast the elevation changes in the next 5 years. All regions will experience the elevation decrease, with a mean decline −1.74 ± 0.39 m and a corresponding rate −0.35 ± 0.08 m/a in ASM. This is similar to that of −0.38 ± 0.16 m/a between 2002 and 2003, showing its stability in the near future.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3