Mechanism of Coup and Contrecoup Injuries Induced by a Knock-Out Punch

Author:

Toma MilanORCID,Chan-Akeley Rosalyn,Lipari Christopher,Kuo Sheng-Han

Abstract

Primary Objective: The interaction of cerebrospinal fluid with the brain parenchyma in an impact scenario is studied. Research Design: A computational fluid-structure interaction model is used to simulate the interaction of cerebrospinal fluid with a comprehensive brain model. Methods and Procedures: The method of smoothed particle hydrodynamics is used to simulate the fluid flow, induced by the impact, simultaneously with finite element analysis to solve the large deformations in the brain model. Main Outcomes and Results: Mechanism of injury resulting in concussion is demonstrated. The locations with the highest stress values on the brain parenchyma are shown. Conclusions: Our simulations found that the damage to the brain resulting from the contrecoup injury is more severe than that resulting from the coup injury. Additionally, we show that the contrecoup injury does not always appear on the side opposite from where impact occurs.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3