The Strain Rates in the Brain, Brainstem, Dura, and Skull under Dynamic Loadings

Author:

Hosseini-Farid MohammadORCID,Amiri-Tehrani-Zadeh MaryamSadat,Ramzanpour Mohammadreza,Ziejewski Mariusz,Karami Ghodrat

Abstract

Knowing the precise material properties of intracranial head organs is crucial for studying the biomechanics of head injury. It has been shown that these biological tissues are significantly rate-dependent; hence, their material properties should be determined with respect to the range of deformation rate they experience. In this paper, a validated finite element human head model is used to investigate the biomechanics of the head in impact and blast, leading to traumatic brain injuries (TBI). We simulate the head under various directions and velocities of impacts, as well as helmeted and unhelmeted head under blast shock waves. It is demonstrated that the strain rates for the brain are in the range of 36 to 241 s−1, approximately 1.9 and 0.86 times the resulting head acceleration under impacts and blast scenarios, respectively. The skull was found to experience a rate in the range of 14 to 182 s−1, approximately 0.7 and 0.43 times the head acceleration corresponding to impact and blast cases. The results of these incident simulations indicate that the strain rates for brainstem and dura mater are respectively in the range of 15 to 338 and 8 to 149 s−1. These findings provide a good insight into characterizing the brain tissue, cranial bone, brainstem and dura mater, and also selecting material properties in advance for computational dynamical studies of the human head.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3