Eco-Approach and Departure System for Left-Turn Vehicles at a Fixed-Time Signalized Intersection

Author:

Jiang HuifuORCID,An Shi,Wang Jian,Cui Jianxun

Abstract

This research proposed an eco-approach and departure system for left-turn vehicles at a fixed-time signalized intersection. This system gives higher priority to enhancing traffic safety than improving mobility and fuel efficiency, and optimizes the entire traffic consisted of connected and automated vehicles (CAVs) and conventional human-driven vehicles by providing ecological speed trajectories for left-turn CAVs. All the ecological speed trajectories are offline optimized before the implementation of system. The speed trajectory optimization is constructed in Pontryagin’s Minimum Principle structure. The before and after evaluation of the proposed system shows the percentage of vehicles that drive pass the intersection at safe speed increases by 2.14% to 45.65%, fuel consumption benefits range 0.53% to 18.44%, emission benefits range from 0.57% to 15.69%, no significant throughput benefits is observed. The proposed system significantly enhances the traffic safety and improves the fuel efficiency and emission reduction of left-turn vehicles with no adverse effect on mobility, and has a good robustness against the randomness of traffic. The investigation also indicates that the computation time of proposed system is greatly reduced compared to previous eco-driving system with online speed optimization. The computation time is up to 0.01 s. The proposed system is ready for real-time application.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference41 articles.

1. Connected Vehicle Eco GlidePath at Signalized Intersectionshttp://higherlogicdownload.s3.amazonaws.com/AUVSI/c2a3ac12-b178-4f9c-a654-78576a33e081/UploadedImages/Proceedings/Posters/USDOT/DOT%2012%20Connected%20Vehicle%20Eco%20GlidePath%20at%20Signalized%20Intersections.pdf

2. Evaluation of the Dutch Eco-Driving Programme. EIE-2003-114 AID-EE Project: Project Executed within the Frame-Work of Energy Intelligence for Europe Programhttps://www.ecofys.com/files/files/aid-ee-2006-evaluation-ecodrive-netherlands.pdf

3. Energy Policies of IEA Countries: Japan (International Energy Agency)http://www.iea.org/textbase/nppdf/free/2008/japan2008.pdf

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3