A Brief Analysis of Key Machine Learning Methods for Predicting Medicare Payments Related to Physical Therapy Practices in the United States

Author:

Kulkarni Shrirang A.,Pannu Jodh S.,Koval Andriy V.,Merrin Gabriel J.,Gurupur Varadraj P.ORCID,Nasir Ayan,King ChristianORCID,Wan Thomas T. H.ORCID

Abstract

Background and objectives: Machine learning approaches using random forest have been effectively used to provide decision support in health and medical informatics. This is especially true when predicting variables associated with Medicare reimbursements. However, more work is needed to analyze and predict data associated with reimbursements through Medicare and Medicaid services for physical therapy practices in the United States. The key objective of this study is to analyze different machine learning models to predict key variables associated with Medicare standardized payments for physical therapy practices in the United States. Materials and Methods: This study employs five methods, namely, multiple linear regression, decision tree regression, random forest regression, K-nearest neighbors, and linear generalized additive model, (GAM) to predict key variables associated with Medicare payments for physical therapy practices in the United States. Results: The study described in this article adds to the body of knowledge on the effective use of random forest regression and linear generalized additive model in predicting Medicare Standardized payment. It turns out that random forest regression may have any edge over other methods employed for this purpose. Conclusions: The study provides a useful insight into comparing the performance of the aforementioned methods, while identifying a few intricate details associated with predicting Medicare costs while also ascertaining that linear generalized additive model and random forest regression as the most suitable machine learning models for predicting key variables associated with standardized Medicare payments.

Publisher

MDPI AG

Subject

Information Systems

Reference41 articles.

1. Scikit-learn: Machine Learning in Python;Pedregosa;J. Mach. Learn. Res.,2011

2. Classification Performance of Bagging and Boosting Type Ensemble Methods with Small Training Sets

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3