The Influence of Lignin Diversity on the Structural and Thermal Properties of Polymeric Microspheres Derived from Lignin, Styrene, and/or Divinylbenzene

Author:

Goliszek MartaORCID,Podkościelna Beata,Sevastyanova OlenaORCID,Gawdzik BarbaraORCID,Chabros Artur

Abstract

This work investigates the impact of lignin origin and structural characteristics, such as molecular weight and functionality, on the properties of corresponding porous biopolymeric microspheres obtained through suspension-emulsion polymerization of lignin with styrene (St) and/or divinylbenzene (DVB). Two types of kraft lignin, which are softwood (Picea abies L.) and hardwood (Eucalyptus grandis), fractionated by common industrial solvents, and related methacrylates, were used in the synthesis. The presence of the appropriate functional groups in the lignins and in the corresponding microspheres were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FT-IR), while the thermal properties were studied by differential scanning calorimetry (DSC). The texture of the microspheres was characterized using low-temperature nitrogen adsorption. The swelling studies were performed in typical organic solvents and distilled water. The shapes of the microspheres were confirmed with an optical microscope. The introduction of lignin into a St and/or DVB polymeric system made it possible to obtain highly porous functionalized microspheres that increase their sorption potential. Lignin methacrylates created a polymer network with St and DVB, whereas the unmodified lignin acted mainly as an eco-friendly filler in the pores of St-DVB or DVB microspheres. The incorporation of biopolymer into the microspheres could be a promising alternative to a modification of synthetic materials and a better utilization of lignin.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3