The Northern White-Cedar Recruitment Bottleneck: Understanding the Effects of Substrate, Competition, and Deer Browsing

Author:

Reuling Laura F.,Kern Christel C.,Kenefic Laura S.ORCID,Bronson Dustin R.

Abstract

Research Highlights: Regenerating northern white-cedar (Thuja occidentalis L.) is challenging throughout much of its range. This study attempts to relate differences in natural regeneration to stand- and seedbed-level factors. Background and Objectives: Lack of regeneration of northern white-cedar is often attributed to overbrowsing by white-tailed deer (Odocoileus virginianus Zimmerman) because white-cedar is a preferred winter browse species. However, there are many other factors that may contribute to regeneration failure for white-cedar including its specific seedbed requirements and competition from other, often faster-growing trees and shrubs. Materials and Methods: We surveyed five mature white-cedar stands in Wisconsin, USA that have had little to no management in the past 50+ years to find stem densities of natural white-cedar regeneration in three height classes. We also collected data at each stand on potential predictor variables including overstory attributes, competitive environment, seedbed, and browsing by deer. We used model selection to create separate models to predict stem density of each white-cedar regeneration height class. Results: None of the measures of deer browsing used in this study were found to be associated with white-cedar regeneration. Soil pH, competition from other seedlings and saplings, and stem density of white-cedar in the overstory were found to be potentially associated with white-cedar regeneration. Conclusions: While browsing by deer is likely a factor affecting white-cedar regeneration in many areas, this study highlights the challenge of quantifying deer browse effects, as well as showing that other factors likely contribute to the difficulty of regenerating white-cedar.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3