Doppler Lidar Investigations of Wind Turbine Near-Wakes and LES Modeling with New Porous Disc Approach

Author:

Uchida TakanoriORCID,Yoshida Tadasuke,Inui Masaki,Taniyama Yoshihiro

Abstract

Many bottom-mounted offshore wind farms are currently planned for the coastal areas of Japan, in which wind speeds of 6.0–10.0 m/s are extremely common. The impact of such wind speeds is very relevant for the realization of bottom-mounted offshore wind farms. In evaluating the feasibility of these wind farms, therefore, strict evaluation at wind speeds of 6.0–10.0 m/s is important. In the present study, the airflow characteristics of 2 MW-class downwind wind turbine wake flows were first investigated using a vertically profiling remote sensing wind measurement device (lidar). The wind turbines used in this study are installed at the point where the sea is just in front of the wind turbines. A ground-based continuous-wave (CW) conically scanning wind lidar system (“ZephIR ZX300”) was used. Focusing on the wind turbine near-wakes, the detailed behaviors were considered. We found that the influence of the wind turbine wake, that is, the wake loss (wind velocity deficit), is extremely large in the wind speed range of 6.0–10.0 m/s, and that the wake loss was almost constant at such wind speeds (6.0–10.0 m/s). It was additionally shown that these results correspond to the distribution of the thrust coefficient of the wind turbine. We proposed a computational fluid dynamics (CFD) porous disk (PD) wake model as an intermediate method between engineering wake models and CFD wake models. Based on the above observations, the wind speed range for reproducing the behavior of the wind turbine wakes with the CFD PD wake model we developed was set to 6.0–10.0 m/s. Targeting the vertical wind speed distribution in the near-wake region acquired in the “ZephIR ZX300”, we tuned the parameters of the CFD PD wake model (CRC = 2.5). We found that in practice, when evaluating the mean wind velocity deficit due to wind turbine wakes, applying the CFD PD wake model in the wind turbine swept area was very effective. That is, the CFD PD wake model can reproduce the mean average wind speed distribution in the wind turbine swept area.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3