Optimized Energy and Air Quality Management of Shared Smart Buildings in the COVID-19 Scenario

Author:

Anastasi Giuseppe,Bartoli Carlo,Conti PaoloORCID,Crisostomi EmanueleORCID,Franco AlessandroORCID,Saponara Sergio,Testi DanieleORCID,Thomopulos DimitriORCID,Vallati Carlo

Abstract

Worldwide increasing awareness of energy sustainability issues has been the main driver in developing the concepts of (Nearly) Zero Energy Buildings, where the reduced energy consumptions are (nearly) fully covered by power locally generated by renewable sources. At the same time, recent advances in Internet of Things technologies are among the main enablers of Smart Homes and Buildings. The transition of conventional buildings into active environments that process, elaborate and react to online measured environmental quantities is being accelerated by the aspects related to COVID-19, most notably in terms of air exchange and the monitoring of the density of occupants. In this paper, we address the problem of maximizing the energy efficiency and comfort perceived by occupants, defined in terms of thermal comfort, visual comfort and air quality. The case study of the University of Pisa is considered as a practical example to show preliminary results of the aggregation of environmental data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3