Abstract
Five major operations for the conversion of lignocellulosic biomasses into bioethanol are pre-treatment, detoxification, hydrolysis, fermentation, and distillation. The fermentation process is a significant biological step to transform lignocellulose into biofuel. The interactions of biochemical networks and their uncertainty and nonlinearity that occur during fermentation processes are major problems for experts developing accurate bioprocess models. In this study, mechanical processing and pre-treatment on the palm trunk were done before fermentation. Analysis was performed on the fresh palm sap and the fermented sap to determine the composition. The analysis for total sugar content was done using high-performance liquid chromatography (HPLC) and the percentage of alcohols by volume was determined using gas chromatography (GC). A model was also developed for the fermentation process based on the Adaptive-Network-Fuzzy Inference System (ANFIS) combined with particle swarm optimization (PSO) to predict bioethanol production in biomass fermentation of oil palm trunk sap. The model was used to find the best experimental conditions to achieve the maximum bioethanol concentration. Graphical sensitivity analysis techniques were also used to identify the most effective parameters in the bioethanol process.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献