SMRT and Illumina RNA-Seq Identifies Potential Candidate Genes Related to the Double Flower Phenotype and Unveils SsAP2 as a Key Regulator of the Double-Flower Trait in Sagittaria sagittifolia

Author:

Gao Meiping,Jiang Wen,Lin Zhicheng,Lin Qian,Ye Qinghua,Wang Wei,Xie Qian,He XinhuaORCID,Luo Cong,Chen QingxiORCID

Abstract

Double flowers are one of the important objectives of ornamental plant breeding. Sagittaria sagittifolia is an aquatic herb in the Alismataceae family that is widely used as an ornamental plant in gardens. However, the reference genome has not been published, and the molecular regulatory mechanism of flower formation remains unclear. In this study, single molecule real-time (SMRT) sequencing technology combined with Illumina RNA-Seq was used to perform a more comprehensive analysis of S. sagittifolia for the first time. We obtained high-quality full-length transcripts, including 53,422 complete open reading frames, and identified 5980 transcription factors that belonged to 67 families, with many MADS-box genes involved in flower formation being obtained. The transcription factors regulated by plant hormone signals played an important role in the development of double flowers. We also identified an AP2 orthologous gene, SsAP2, with a deletion of the binding site for miR172, that overexpressed SsAP2 in S. sagittifolia and exhibited a delayed flowering time and an increased number of petals. This study is the first report of a full-length transcriptome of S. sagittifolia. These reference transcripts will be valuable resources for the analysis of gene structures and sequences, which provide a theoretical basis for the molecular regulatory mechanism governing the formation of double flowers.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3