Abstract
Tim-3/Gal-9 and the NLRC4 inflammasome contribute to glioma progression. However, the underlying mechanisms involved are unclear. Here, we observed that Tim-3/Gal-9 expression increased with glioma malignancy and found that Tim-3/Gal-9 regulate NLRC4 inflammasome formation and activation. Tim-3/Gal-9 and NLRC4 inflammasome-related molecule expression levels increased with WHO glioma grade, and this association was correlated with low survival. We investigated NLRC4 inflammasome formation by genetically regulating Tim-3 and its ligand Gal-9. Tim-3/Gal-9 regulation was positively correlated with the NLRC4 inflammasome, NLRC4, and caspase-1 expression. Tim-3/Gal-9 did not trigger IL-1β secretion but were strongly positively correlated with caspase-1 activity as they induced programmed cell death in glioma cells. A protein–protein interaction analysis revealed that the FYN-JAK1-ZNF384 pathways are bridges in NLRC4 inflammasome regulation by Tim-3/Gal-9. The present study showed that Tim-3/Gal-9 are associated with poor prognosis in glioma patients and induce NLRC4 inflammasome formation and activation. We proposed that a Tim-3/Gal-9 blockade could be beneficial in glioma therapy as it would reduce the inflammatory microenvironment by downregulating the NLRC4 inflammasome.
Funder
Ministry of Trade, Industry and Energy
Ministry of Science, Technology and Information
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献